
Preventing permission escalation in chat apps utilizing role
”permission weighting”

Mauro M.*

*Independent Researcher, hello@maurom.dev

Abstract

With the rise of online chat apps with a hierarchical role sys-
tem, the likes of Discord and Teamspeak, since communities
frequently have over one hundred thousand members, the need
for automation protection systems for these communities has
risen proportionally. One of the desired features in the afore-
mentioned protection systems is the ability to prevent malicious
actors from gaining more permissions or access than they had
been initially granted.

Given the amount of access a member has is directly de-
rived from the member’s roles there is the need to quantify the
amount of access a particular role grants a member. This pa-
per puts forward an algorithm that numerically quantifies this
access in a comparable manner by attributing each permission
a numerical weight. This weight is based on the amount of
damage a malicious actor could exert upon the community, fur-
thermore, the percentage of channels the role grants a member
access to is also taken into account. This permits protection
system developers to assess the risk of a member having a given
role and act accordingly.

1 Definitions

Member or User A user of a chat app, member is used to de-
scribe a user when they are in a server.

Server or Guild Represents a group of users in a chat-app.
Contains channels, members and roles.

Channel Servers are organized in to named text channels
where users can post messages, upload files, and share
images for others to see at any time.

Role Roles can be assigned to members and have permissions
and a name. These can be used to set up a hierarchical
system where some users have more permissions than
others, to, among other cases, moderate servers.

2 Weighing Permissions

The most straightforward way to weigh permissions is to ar-
range them in an array, ordering them in a hierarchical manner
of ascending importance. Importance is frequently subjective
but should always account for the amount of damage a potential
malicious actor could do with that permission.

[Manage Members, Manage Roles, Manage
Channels, Manage Server, Kick, Ban,

Administrator]

Figure 1. Example of a ordered array with permissions

Consider the following example utilizing permissions from
a Discord role:

Weight can simply be attributed by taking the permission’s
index and adding one (if index is i and the permission weight
is Pw, Pw = i + 1), for the example in Figure 1.

Name Index (i) Weight (Pw)
Manage Members 0 1

Manage Roles 1 2
Manage Channels 2 3

Manage Server 3 4
Kick 4 5
Ban 5 6

Administrator 6 8

Table 1. Example of table with index-based weights

Given a certain permission name (aspermissionname,
and a list of permissions (akin to Figure 1 as permissionlist)
a permissions weight can be obtained as simply as:

def get_permission_weight(permission_name:
str) -> int:
try:

return
permission_list.index(permission_name)
+ 1

except IndexError:
return 0

Figure 2. Sample function in Python to obtain the weight of a
permission

It is important to note that this method is necessarily O(n).
There are ways to improve the overall speed of the algorithm
for larger data sets however this paper will not contemplate
these as roles usually have no more than 40 permissions mak-
ing the time difference effectively negligible.



3 Weighing Roles

Put simply, the role weight is the product between the mean of
the role’s permission’s weight and the percentage of channels
the member can access.

The role permission weight (Rw) can be equated as:

Rw =
∑

Pw

l
·
(

Ca

Ct
· 100

)
(1)

Where:

• Pw Represents the weight of each permission

• l is the amount of permissions

• Ca is the amount of channels the member can access

• Ct is the total amount of channels in the guild

• Ct, l, Ca > 0

Given a certain role object, with a property containing per-
missions objects (role.permissions) that have a name prop-
erty, the total amount of channels in a guild as total channels
and the amount of channels the member can access as
accessible channels the weight of a role can be obtained as:

def get_role_weight(role, total_channels:
int, accessible_channels: int) -> float:

weights =
[get_permission_weight(permission.name)
for permission in role.permissions]

return (sum(weights)/len(weights)) *
((total_channels /
accessible_channels) * 100)

Figure 3. Sample function in Python to obtain the weight of a
role.

It is important to note that the function is very time com-
plex. The accessible channels integer requires an iteration
through all of a guild’s roles and a check for permissions for
the user’s roles, furthermore the example function itself (Figure
3) requires an iteration through all of the the role’s permissions
ultimately making the function O(n2).

4 Implementation Notes

Due to the pertinent time complexity of the methodology, if
aiming for maximum efficiency it is advised to subscribe to a
role creation and modification event (if the API used provides
them) and determine the weights upon role creation or modifi-
cation and store them in a form of persistent memory.

The algorithm itself can be used to determine how much
access a user gains with a certain role (∆Rw) allowing guild
protection systems to recognize and mitigate potential permis-
sion escalations by unauthorized members.

Additional Information and Declarations
Competing Interests

There are no competing interests


	Definitions
	Weighing Permissions
	Weighing Roles
	Implementation Notes

