
Model and implementation of user activity tracking utilizing the
TLS Client Hello’s server name extension

Mauro M.*

*Independent Researcher, hello@maurom.dev

Abstract
This paper puts forward a feasible, non-intrusive, method of
tracking user activity using TLS’s Client Hello section of a
handshake (specified in the TLS protocol [1]), namely the
server name extension.

This method can provide an attacker with relevant informa-
tion regarding patterns and services utilized inside of the target
network, further expanding their understanding of the attack
surface, potentially, serving as a tool to determine the timing
of an attack or, even, provide an attacker with knowledge of a
point of entry to a given system.

It is noteworthy that TLS Client Hellos will be encrypted
in a future version of the TLS protocol, rendering this method
infeasible in fully updated networks. [2]

1 Method Description

Daemon Client
Database

Target
network

Figure 1. Overview of the proposed method

1.1 Daemon

The daemon handles packet sniffing and filtering, it should be
designed in a way that it can act independently within the target
network minimizing the number of requests it makes to avoid
detection by firewalls. Additionally, the daemon must filter out
unnecessary packets, depending on the use-case. It must only
commit to the database purely necessary information. For ex-
ample, if the use-case was to track a user’s browsing history, to
distinguish patterns, like working hours, domains including the
terms ”cdn”, ”source”, ”API” should not be sent to the database
as these are not required. Finally, the daemon should submit the
filtered packets to the database. The amount of data submitted,
shall again, vary by use-case, but should, in most use-cases, in-
clude the MAC address of the source, the URL requested (The
value of server name in the server name extension in
the sniffed handshake), and timestamp as to when the request
was made.

1.2 Data store

This can constitute any data store that can handle a high
throughput of data. The proposed model does not require the
data store to return data in any special format or preform any
operations on the data it receives.

1.3 Client

The client should establish a bi-directional connection with the
data store to be able to display the data store’s data and allow
the end-user to perform operations on the aforementioned data.
Furthermore, the end-user should be able to group, and name
groups of MAC addresses, which ultimately represent a certain
client that connects with a pseudo-random MAC address. De-
termining what group, if any, a MAC address should be in is
not covered by this paper.

2 Method Implementation

The implementation presented herein represents one, of many
use-cases of the aforementioned model. The goal of presenting
this implementation is to show the real-world feasibility of the
model. It concerns simply collecting a user’s traffic and dis-
playing it to an attacker, this can be used to determine patterns
inside the target network, for example, understanding when a
certain device goes offline, consistently, can represent a break
for the owner of that device.

2.1 Daemon

The daemon is implemented in Python utilizing the scapy
module and a wrapper for connecting to the datastore, in this
case, a PostgreSQL database.

2.1.1 Packet Sniffing

First, a filter is required to only sniff the client hello section of
the handshake, since scapy allows BPF style filters [3] the filter
in Figure 2 is used.

tcp dst port 443 and (tcp[((tcp[12] &
0xf0) >> 2)] = 0x16 && (tcp[((tcp[12] &

0xf0) >> 2)+5] = 0x01))

Figure 2. BPF filter that filters TLS Client Hellos

This filter verifies that the first byte of the TLS header is
22 and that the sixth byte is 1 this specifies a TLS Client Hello
according to the current standard [1]. Applying that filter to
scapy’s AsyncSniffer a list of packets is obtained (we shun
scapy’s PacketList because we do not require any of the
additional functionality provided by it). The list is then passed
to the filter.

2.1.2 Filtering

Passes regex
tests?

Discard Packet

NoYes

NoPasses
subdomain

tests?

Accept Packet

Yes

List of
sniffed
packets

Figure 3. Overview of the two-step filter

The proposed implementation uses a two-step filter de-
scribed in Figure 3. It consists of a regex check and a sub-
domain ”validity” check. Together, in testing, these caught
99.9% of domains from a known list of CDN domains (N =
14300). The list of filtered domains is then commited to the
data store.

2.1.2.1 Regular Expression Check

The regular expression check iterates over the constituents of
the array that contains the sniffed packets and checks them
against a list of regular expressions which check for strings uti-
lized in common content serving domains.

ˆdist\.|ˆmedia\.|ˆassets\.|ˆvideos\.|
ˆpush\.|ˆjs\.|ˆwidget\.|ˆplugins\.|ˆi\.|
ˆimg\.|ˆfonts\.|ˆcontrollers\.|ˆuse\.|
ˆstatic\.|ˆapi\.|ˆapis\.|ˆcdn\.|ˆmirror

Figure 4. Regular expression used to filter the majority of do-
mains

The main regular expression that checks for these types of
sub-domains is represented in Figure 4. In testing, the regular
expression alone caught 48% of domains from a known list of
CDN domains (N = 14300)

2.1.2.2 Sub-domain Check

The sub domain check iterates over an array consisting of the
domain split by "." it then removes www from the array, if
it exists. It then removes the last two elements, respectively,
the domain name and gTLD. It then proceeds to iterate through
the remaining elements of the array and checks if their length
is ≤ 3 or if it contains a number. In testing this check alone
caught 28.7% of domains from a known list of CDN domains
(N = 14300).

import re

for domain in domains:
if not re.search(re.compile(regex,

re.DOTALL), domain)):
list_ = domain.split(.)
list_ = list_[:len(list_) - 2]
list_.remove(’www’) if ’www’ in list_

else list_

for element in list_:
if not (len(element) <= 3 or

re.search(r"[0-9]", element) or
element.count(’-’) >= 2):
Accept the domain

Figure 5. Example Python implementation of the sub-domain
check (adapted for clarity)

2.1.3 Data store

The proposed implementation utilizes a PostgreSQL database
which holds the pertinent information from the filtered packets
for easy access by the client. It contains two tables packets
and groups, which hold, respectively, the sniffed packets and
groups of MAC addresses with their respective name, for ac-
cess and modification by the client.

2.1.4 Packets Table

In the proposed implementation the packets table stores
the MAC address of the device that initiated the handshake,
the value of the server name extension and a UNIX epoch
timestamp [4] with the time at which the handshake was ini-
tiated. The schema represented in Figure 6 was used which
yields a database like the one represented in Table 1.

CREATE TABLE IF NOT EXISTS Packets(
mac TEXT,
url TEXT,
ts TIMESTAMP
);

Figure 6. Create table query to show the table’s schema

MAC URL Timestamp (ts)
59:9D:B9:EE:2D:E8 server.local 1609459200

Table 1. Representation of the packets table

2.1.5 Groups Table

In the proposed implementation the groups table stores
named groups of MAC addresses where multiple MAC ad-
dresses can be related to a single name. The schema repre-
sented in Figure 7 was used which yields a database like the
one represented in Table 2.

CREATE TABLE IF NOT EXISTS Groups(
addresses TEXT[],
name TEXT
);

Figure 7. Create table query to show the table’s schema

MACs Name
{59:9D:B9:EE:2D:E8} IT Admin

Table 2. Representation of the groups table

2.2 Client

Has group CLI

Group Packets

Has group

List Search GroupList Create

Figure 8. Overview of CLI’s command hierarchy

The proposed implementation includes a CLI client which
allows the end user to access and manipulate data stored in the
data store. For simplicity’s sake the CLI was created using the
click Python package

As can be observed in Figure 8 the CLIs commands are
grouped categorically. In the group category the user can list
and create groups, whereas in the packets category the user can
list, search for a specific MAC address or return all requests
belonging to a group.

Additional Information and Declarations

Competing Interests

There are no competing interests

Source code availability

The source code along with supporting documents can
be found at https://github.com/MM-coder/
tls-client-hello-activity-tracking

References
[1] E. Rescorla, “The transport layer security (tls) protocol

version 1.3,” 08 2018.

[2] K. Oku, C. Wood, E. Rescorla, and N. Sullivan, “Tls en-
crypted client hello,” 10 2020.

[3] S. Mccanne and V. Jacobson, “The bsd packet filter: A
new architecture for user-level packet capture,” pp. 259–
269, 1992.

[4] T. O. Group, “General concepts,” 2001.

https://github.com/MM-coder/tls-client-hello-activity-tracking
https://github.com/MM-coder/tls-client-hello-activity-tracking

	Method Description
	Daemon
	Data store
	Client

	Method Implementation
	Daemon
	Packet Sniffing
	Filtering
	Data store
	Packets Table
	Groups Table

	Client

